Tuesday, 5 February 2013

R Statistical Tool Assignment-4

This class on 5th of Feb revolved around reading a particular Data Set. Converting that Data into a time series format and then calculating the returns from it.
Data set- CNX Mid-cap Index downloaded from NSE from August 2012-January 2013-10th reading to 95th reading. 


Commands:-
> z<-read.csv(file.choose(),header=T)
> Close<-z$Close
> Close
> Close.ts<-ts(Close)
> Close.ts<-ts(Close,deltat= 1/252)
z1<-ts(data=Close.ts[10:95],frequency=1,deltat=1/252) 
> z1.ts<-ts(z1)
> z1.ts
> z1.diff<-diff(z1)
> z2<-lag(z1.ts,K=-1)
> Returns<-z1.diff/z2
> plot(Returns,main=" Returns from 10 th to 95th day of NSE Mid-cap Index ")
z3<-cbind(z1.ts,z1.diff,Returns)
> plot(z3,main=" Data from 10th-95th day ; Difference ; Returns")





Assignment:-2

Question: 1-700 data is available, Predict the data from 701-850, use the GLM estimation using LOGIT Analysis for the same

commands

> z<-read.csv(file.choose(),header=T)
> z1<-z[1:700,1:9]
> head(z1)
> z1$ed<-factor(z1$ed)
> z1.est<-glm(default ~ age + ed + employ + address + income + debtinc + creddebt + othedebt, data=z1, family ="binomial")
> summary(z1.est)
> forecast<-z[701:850,1:8]
> forecast$ed<-factor(forecast$ed)
> forecast$probability<-predict(z1.est,newdata=forecast,type="response")
> head(forecast)















No comments:

Post a Comment